
a how-to guide
from

Spread ideas
with a pocket
wi-fi portal Free tutorial
February 19 & 20
12–6 p.m. (stop by anytime)

319 N. 11th St. #3D
Philadelphia, PA 19107

Join our email list
at iffybooks.net

Follow @iffybooks
on social media

Send corrections to
iffybooks@protonmail.com

The Wemos D1 mini
is a low-cost,
low-power
development board
based on the ESP8266
wi-fi chip. You can
use it to host a web
page that anyone
nearby can access.
Imagine you're on a train, in an area with poor cell reception.
You look for available wi-fi networks, and there's one called
"Free Reading Wi-fi." When you connect, you get a popup
window that says, "Sorry, this network doesn't connect to the
internet! Enjoy this essay!" And what follows is something you
never would've read otherwise.

This zine will show you how to make your own wi-fi access
point and web server using a Wemos D1 mini board. The
Wemos D1 mini is small, cheap, and easy to program using the
Arduino IDE. It's also incredibly power efficient. Plug one into a
medium-sized USB power bank, and it'll easily run for a couple
days.

Here are some things you can do with a wi-fi captive portal
using a Wemos D1 mini:

➔ Share an article/essay/political slogan with anyone who
happens to be at the coffee shop.

➔ Promote an upcoming event without using social media.

➔ Share a poetry anthology with other commuters on
your train.

➔ Share maps and information on a hiking trip without
cell reception.

➔ Use several wi-fi boards to send a message using SSID
names alone.

A captive portal is a page displayed to the user when they
connect to a wi-fi access point, often used to let the user
authenticate before connecting to the internet. You may have
seen wi-fi captive portals in coffee shops and hotels.

You don’t need to know how to program to complete this
tutorial! Knowing some HTML will help, but it isn’t necessary.
You'll start by installing the Arduino IDE (integrated
development environment), which is the application you'll use
to program your Wemos D1 mini.

➡ Install the Arduino IDE (macOS)
For this project you'll need to use version 1.8.x of the Arduino
IDE. If you aren't sure what version you're using, go to the
menu bar and select Arduino > About Arduino.

To download the Arduino IDE, go to the following URL and click
Mac OS X:

https://www.arduino.cc/en/software

Open the .dmg file you just downloaded and drag the Arduino
IDE application file to your Applications folder.

➡ Install the Arduino IDE (Windows)
Go to the following URL and download the Arduino IDE for
WIndows. Follow the instructions to install it on your machine.

https://www.arduino.cc/en/software

➡ Install the Arduino IDE on
Debian-based Linux (e.g., Ubuntu)
Installation method 1: Snap package manager

Open a terminal window and run the following command to
install the Arduino IDE using the Snap package manager. You'll
need to enter your password, and it will take a few minutes to
install.

sudo snap install arduino

Now run the following command to add your username to the
dialout group. This will let you program the board via USB.

sudo usermod -a -G dialout $USER

Restart your computer.

https://www.arduino.cc/en/software
https://www.arduino.cc/en/software

Open a terminal window and run the command arduino to
start the Arduino IDE.

Installation method 2: APT package manager

Depending on the version of Ubuntu you're using, you may be
able to install Arduino using the APT package manager. Simply
type the following command in a terminal window and press
enter. You'll need to enter your password, and it will take a few
minutes to install.

sudo apt-get install arduino

Now run the following command to add your username to the
dialout group. This will let you program the board via USB.

sudo usermod -a -G dialout $USER

Run the command arduino to start the Arduino IDE.

Installation method 3: Installer Script

Go to the following URL and follow the steps to install the
Arduino IDE using the installer script from https://arduino.cc:

https://linoxide.com/how-to-install-arduino-ide-on-ubuntu-20-04

Don't use sudo with this installer script!

https://linoxide.com/how-to-install-arduino-ide-on-ubuntu-20-04/

➡ Install the ESP8266 software
package
When you open the Arduino IDE, you'll see a window that looks
like the one below.

Before you write any code, you'll need to install a package with
the software required to program the ESP8266 chip.

In the menu bar, select File > Preferences.

Add the following URL (all one line) to the list of Additional
Boards Manager URLs, then click OK.

https://arduino.esp8266.com/stable/
package_esp8266com_index.json

Next you'll install the software package you need to program
the ESP8266 chip. In the menu bar, go to Tools > Board >
Boards Manager….

https://arduino.esp8266.com/stable/package_esp8266com_index.json
https://arduino.esp8266.com/stable/package_esp8266com_index.json

Type "esp8266" to find the package, then click Install.

When installation is finished, click Close.

Now go to Tools > Board > ESP8266 Boards and select
LOLIN(WEMOS) D1 mini (clone).

➡ Select a serial port
Next you'll use the Arduino IDE to select a serial port, which
your computer will use to transfer data to your Wemos D1
mini. Start by connecting your Wemos D1 mini to your
computer with a microUSB cable.

Some micro USB cables have a data connection, while others
supply power but can't transfer data. If you have trouble with
this step, try using a different micro USB cable.

Note: If you plug your board into a different USB port,
you'll need to repeat this step.

Steps for Mac & Linux:

Connect your Wemos D1 mini to your computer using a micro
USB cable. Next you'll select the serial port your computer will
use to communicate with your board. In the menu bar, go to
Tools > Port and select /dev/cu.usbserial-1420. The number
at the end will probably be different for you.

Steps for Windows:

Go to Tools > Port and you'll see a menu titled Serial Ports
with a list of options such as COM3, COM4, etc. Make a mental
note of the ports you see, or write them down.

Connect your Wemos D1 mini to your computer, then go back
to Tools > Port. Look for a COM port that wasn't there before,
and select that one.

If that doesn't work, open the Windows Device and Driver
Installation menu. Look for "unknown devices" and update
your USB driver.

➡ Install the CH341 driver
If you're using Windows or a Mac from mid-2018 or earlier,
you'll need to install a driver for the CH341 chip on your
Wemos D1 mini. The CH341 is the chip that translates data
from your computer's USB connection to the serial connection
on the ESP8266.

If you're using a Mac and you aren't sure whether to install the
CH341 driver, it's better to wait and see if you need it. Move on
to Test 1 (below) and try to upload some code to your board. If
it doesn't work, you can come back to this step and install the
driver.

Visit the following URL to download the CH341 driver:

https://www.wemos.cc/en/latest/ch340_driver.html

If you're using Linux, try the next step without installing the
driver and see if it works. If you get an error, come back to this
step and install the following driver:

https://github.com/raashidmuhammed/esp8266

https://www.wemos.cc/en/latest/ch340_driver.html
https://github.com/raashidmuhammed/esp8266

Once the driver is installed, quit the Arduino IDE and reopen it.
This may or may not be necessary, but it can't hurt.

Now you're ready to program your Wemos D1 mini clone
board. Nice work!

✤⦿❑▸❖❍▿▫✼◎▲

Test 1: Make the LED blink
▲◎✼▫▿❍❖▸❑⦿✤

Let's start with a super simple program, just to make sure
you're able to connect to the board and program it. You can
find the example code for this project at one of the following
URLs:

https://iffybooks.net/pocket-wifi-portal
https://github.com/iffybooks/pocket-wifi-portal

Copy the code below into the Arduino IDE:

void setup() {
pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);
digitalWrite(LED_BUILTIN, LOW);
delay(1000);

}

The code above defines two functions: setup() and loop().
The setup() function runs first, then the loop() function
runs repeatedly as long as the board is plugged in.

https://iffybooks.net/pocket-wifi-portal
https://github.com/iffybooks/pocket-wifi-portal

In the setup() function, pinMode(LED_BUILTIN, OUTPUT)
prepares the board to use the built-in LED.

Next, the loop() function makes the LED blink repeatedly. It
first uses digitalWrite(LED_BUILTIN, HIGH) to turn the
LED on. Next, the function delay(1000) pauses your code for
1000 milliseconds, or 1 second. The function
digitalWrite(LED_BUILTIN, LOW) turns off the LED, then
delay(1000) pauses for one second.

To compile your code, click the Verify button in the top left
corner.

Choose a name for your project, then click Save. Don't change
the save location.

Note: The Arduino IDE may be unresponsive for 10–20
seconds while it compiles your code.

Next, click Upload to start uploading the program to your
board.

When the upload is complete, you'll see "Done uploading"
below the code window.

The LED on your board should start blinking on and off. Pretty
cool!

Note: If you're using
Linux or an older Mac
and you weren't able to
upload your code, go
back to the previous
section and install the
CH341 driver.

✤⦿❑▸❖❍▿▫✼◎▲

Test 2: Create a wi-fi access
point with an SSID name
▲◎✼▫▿❍❖▸❑⦿✤

Next you'll run a test to make sure you can create a wi-fi access
point. The code below will broadcast a network name, or SSID
(service set identifier), that you'll be able to see when you look
for wi-fi networks on your laptop or phone.

In the Arduino IDE, update your code to match the example
below. You'll need to add the three lines in bold.

#include <ESP8266WiFi.h>

void setup() {
pinMode(LED_BUILTIN, OUTPUT);
WiFi.mode(WIFI_AP);
WiFi.softAP("Free Reading Wifi");

}

void loop() {
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);
digitalWrite(LED_BUILTIN, LOW);
delay(1000);

}

To change the SSID name, edit the text between double quotes
in the WiFi.softAP() function. The example above will create a
network called "Free Reading Wifi." You can change the SSID if
you want.

Your network's SSID name can be up to 32 characters long, but
in practice you should stick to 31 characters. That's because
some devices use null-terminated strings for SSID names.

Click the Upload icon to upload the program to your Wemos
D1 mini. When it's finished, look at the available wi-fi networks
and you should see the one you just created. (If you try to
connect, nothing will happen.)

✤⦿❑▸❖❍▿▫✼◎▲

Captive portal approach 1:
Write HTML in the Arduino IDE

▲◎✼▫▿❍❖▸❑⦿✤
Now let's make a captive portal! With this approach, you'll store
the complete HTML code for your web page as a string variable
in your program. The advantages are that all your code will be
in one place, and you won't need any extra plugins.

However, this approach has some limitations. You'll only be
able to create a single page, without any links. You can use
images, but only ones that are 20 KB or smaller. And you'll only
be able to post short documents, a few thousand words or
less.

If you know what you're doing and you just want to build a
more complex site, it's OK to skip this section!

➡ Create a minimal example page
Here's the code for a minimal captive portal page, which simply
displays the word "Hello!" The important parts, for the
purposes of this tutorial, are in bold.

#include <ESP8266WiFi.h>
#include <DNSServer.h>
#include <ESP8266WebServer.h>

const byte DNS_PORT = 53;
IPAddress apIP(172, 217, 28, 1);
DNSServer dnsServer;
ESP8266WebServer webServer(80);

String responseHTML = "<!DOCTYPE html>"
"<html>"
"<head>"
"<title>A Minimal Example Page</title>"
"</head>"
"<body>"
"<p>Hello!</p>"
"</body>"
"</html>";

void setup() {
pinMode(LED_BUILTIN, OUTPUT);
WiFi.mode(WIFI_AP);
WiFi.softAPConfig(apIP, apIP, IPAddress(255,255,255,0));
WiFi.softAP("Minimal Example Wifi");
dnsServer.start(DNS_PORT, "*", apIP);
webServer.onNotFound([]() {
webServer.send(200, "text/html", responseHTML);
digitalWrite(LED_BUILTIN, LOW);
delay(500);
digitalWrite(LED_BUILTIN, HIGH);

});
webServer.begin();

}

void loop() {
if (WiFi.softAPgetStationNum() == 0)
{

delay(100);
} else {

delay(100);
dnsServer.processNextRequest();
webServer.handleClient();

}
}

Go to the following URL, then highlight and copy the code:

https://github.com/iffybooks/pocket-wifi-portal/
blob/main/03_Captive_portal_approach_1/

Minimal_Portal.ino

Paste the code into the Arduino IDE window, replacing your
previous code. Click the Verify button at the top left to make
sure it compiles.

Connect your Wemos D1 mini to your computer, then click
Upload. When the upload is complete, you'll see the message
"Done uploading" at the bottom of the code editor.

On a laptop or phone, open your wi-fi menu. You should see a
network called Minimal Example Wifi.

Click/tap Minimal Example Wifi to connect to the network. If
you wait a moment, a pop-up window should appear with the
word "Hello!"

Here's the code snippet (repeated from above) that contains
HTML code for the captive portal page. It creates a string
variable called responseHTML that begins with "<!DOCTYPE
html>" and ends with "</html>".

String responseHTML = "<!DOCTYPE html>"
"<html>"
"<head>"
"<title>A Minimal Example Page</title>"
"</head>"
"<body>"
"<p>Hello!</p>"
"</body>"
"</html>";

https://github.com/iffybooks/pocket-wifi-portal/blob/main/03_Captive_portal_approach_1/Minimal_Portal.ino
https://github.com/iffybooks/pocket-wifi-portal/blob/main/03_Captive_portal_approach_1/Minimal_Portal.ino
https://github.com/iffybooks/pocket-wifi-portal/blob/main/03_Captive_portal_approach_1/Minimal_Portal.ino

Note that each line has double quotes at the beginning and
end, and that there's a semicolon after the final line. That's the
C/C++/Arduino syntax for defining a string over multiple lines.
The double quotes aren't part of the HTML code.

Trying making a few edits in the HTML! To change the page
title, update the text between <title> and </title>. And add
some new text between the paragraph tags <p> and </p>.

String responseHTML = "<!DOCTYPE html>"
"<html>"
"<head>"
"<title>Bashō Wifi</title>"
"</head>"
"<body>"
"<p>old pond
frog leaping
splash</p>"
"</body>"
"</html>";

The example above uses the
 tag to indicate line breaks.

Connect a Wemos D1 mini to your computer and click Upload
in the top left corner of the window. When the upload is
finished, use your phone or computer to connect to the wi-fi
network you just created.

➡ Make a page with CSS
formatting
So far, you've created a web page that looks pretty plain.
Here's some example code that will make a more
modern-looking page. (For the moment, don't worry about
copying it into your IDE.)

String responseHTML = "<!DOCTYPE html>"
"<html lang='en'>"
"<head>"
"<meta charset='utf-8'>"
"<meta name='viewport'

content='width=device-width,
initial-scale=1'>"

"<title>Free Reading Wi-fi Portal</title>"
"<style>"
"p {font-family: Georgia, serif; font-size:

200%; text-align: center; padding-top:
50px;}"

"div {width: 75%; margin: 0 auto;}"
"</style>"
"</head>"
"<body bgcolor='lightpink'>"
"<div>"
"<p>\"What we do is more important than what

we say or what we say we believe.\" —bell
hooks</p>"

"</div>"
"</body>"
"</html>";

Because double quotes have a special meaning to the C/C++
compiler, you can't use ordinary double quotes in your HTML
code. For HTML attributes you can use single quotes, as in the
following line:

"<html lang='en'>"

Or you can insert a backslash (\) before double quotes to
escape them:

"<p>\"What we do is more important than
what we say or what we say we believe.\"
–bell hooks</p>"

➡ Add a Base64-encoded image
To include an image in a web page, you'd ordinarily use an
 tag that points to an image file. The src attribute
specifies the images's location using either a URL or a relative
path to a file on the same server. Here's an example of the
latter:

Instead of pointing to an external file, you can encode an
image as a Base64 string and include it in your HTML file.
Here's an example of an tag using a Base64 string for a
very small image file (a single green pixel):

<img src='
KGgoAAAANSUhEUgAAAAEAAAABCAMAAAAoyzS7AA
AABlBMVEV/01gAAACf/yQfAAAADElEQVR42mJgA
AgwAAACAAFPbVnhAAAAAElFTkSuQmCC'
alt='one green pixel' />

Now we'll add the following image below the quote. It's a
948-byte PNG image of bell hooks, based on a photo from her
Flickr page that she marked as public domain. You can find the
uncropped original here:

https://www.flickr.com/photos/bellhooksphilosophy/36335440686

https://www.flickr.com/photos/bellhooksphilosophy/36335440686/

And here's a link to the file above:

https://github.com/iffybooks/pocket-wifi-portal/blob/main/
03_Captive_portal_approach_1/bell_hooks.png

Here's the new HTML string, including the image:

String responseHTML = "<!DOCTYPE html>"
"<html lang='en'>"
"<head>"
"<meta charset='utf-8'>"
"<meta name='viewport'
content='width=device-width,
initial-scale=1'>"
"<title>Free Reading Wi-fi Portal</title>"
"<style>"
"p {font-family: Georgia, serif; font-size:
200%; text-align: center; padding-top: 50px;}"
"div {width: 75%; margin: 0 auto;}"
"</style>"
"</head>"
"<body bgcolor='lightpink'>"
"<div>"
"<p>\"What we do is more important than what
we say or what we say we believe.\" –bell
hooks</p>"
"<p><img
src='
EUgAAAHIAAAB/CAMAAAAEnWaRAAAABlBMVEX///8AAABVw
tN+AAADaUlEQVR42uyb647VMAyEx+//0ggdTjdNfRlfUoR
EhcSPXfLFjuOMnQB5/cP7Q6HJWP49cBCJz5/vlxysgPwNw
fpds8BJx67Q7Bio/OJmJXKrmUBidS12KOjhkF5IBbhF0Sg

https://github.com/iffybooks/pocket-wifi-portal/blob/main/03_Captive_portal_approach_1/bell_hooks.png
https://github.com/iffybooks/pocket-wifi-portal/blob/main/03_Captive_portal_approach_1/bell_hooks.png

S/se5NrV/gQkmylujzMSYV+9x1EWCJmLSsTwSI1aCJ8ZMj
BPD5cSsV/+YideR0kQiSwRGwgeDnqWsBCbNxAG/oh2xKHz
icBHNBrXvq8nesxLO2NEOQhmJErJhJV4Pn09yL63l7ldlC
sak7MEJB2h61Z/FNZViKlDXx51EsJhg/CqWnc5qF8MH2/m
8W+nGVxGJy9LvyLec5AZ0J61jK3BWs2GrXLMuouWWtnMeY
Sa7lVnk5Tlduz9/su2YRvaxdo6ChLaDMlYqc7/5VbNnSUd
FK6HJ2AdyOT3W6C4hzSPfLrw2o9OODQjxnsSMlTHTHR0nz
soLWkkFiXWkD0wemS3AzCr+lGOdcqiA7PYNUqrg4adSRc0
cXs4hWJGWSVGZXG01gNAk+nJeBaBJNPuI9tAEUiKkeIFTc
eyP0oPhBMkJrkTX/6F1rr+G9yURoUn1jD7R7CYYNSb6RNO
1HR0b7XvL4egjFRG51An79YlgAGnp2ZuankMitFxb1EyOV
VxIOFuthRrN0YpIGkZqhTyTgJDZHKZOmD6iH4W6cJmgi7y
7Nl8oVJF7Ne12tkz1jGyuI4nOyJk7r/sxfbadf5ckoaqbv
TL9cNUcs58eE44Nt8LWEMV55IkHG8zyYRbZvmsvChF5GXn
rJNWADSFSJk4+MfqPPIjEX7CSeIPzz1tJJT8ME9927O0gM
9/hYJgIUyqdQG6Vj5n7DyB/yj4R9SpyzPL7PcKlkxi1iR7
xUs22jrcjoIkUs40wcAA+kEuXjevP94iblUNPzCImck/aq
kTxWkFyGrlkdzBFDJDagpSd0nasVRpU7zZCpNalFHugeSK
cC8chZPrO64CRfjuEuwksNJ27zFHHUsguUfKLGb1TwXQAE
aoX4j4sSieDWBIErSYtNRHPysYerQn7jG/w/apQ7/n54wv
E8/lwciW51Q2f5CGd2qRDugBjVLLaifZ6KtBAlK1xeomRS
4048f8vvp1SMqLZu3/xb/iJmP2Gg2AASSz2/SWYUFdcUce
U3privW59ML3IUH/jlwADAFRWI+4MU5SBAAAAAElFTkSuQ
mCC' alt='high-contrast photo of bell hooks'
/></p>"
"</div>"
"</body>"
"</html>";

You can find the complete code at the following link:

https://github.com/iffybooks/pocket-wifi-portal/blob/main/
03_Captive_portal_approach_1/Quote_Portal.ino

FInd an image that's 20KB or less, convert it to a Base64 string,
and try adding it to your web page.

If you do a web search for the phrase "convert image to
base64," you'll find lots of sites that can help.

https://github.com/iffybooks/pocket-wifi-portal/blob/main/03_Captive_portal_approach_1/Quote_Portal.ino
https://github.com/iffybooks/pocket-wifi-portal/blob/main/03_Captive_portal_approach_1/Quote_Portal.ino

Or open a terminal window and use a base64 command.
Here's an example, using a PNG file in the Desktop folder.

base64 ~/Desktop/bell_hooks.png

✤⦿❑▸❖❍▿▫✼◎▲

Captive portal approach 2:
Use SPIFFS storage
▲◎✼▫▿❍❖▸❑⦿✤

➡ Install SPIFFS uploader plugin
In order to upload HTML files, images, etc. to the ESP8266 chip,
you'll first need to install a plugin. Go to the releases page and
click ESP8266FS-0.5.0.zip to download the latest release:

https://github.com/esp8266/
arduino-esp8266fs-plugin/releases

When the download is finished, unzip the file to create a
directory called ESP8266FS.

Go to Arduino > Preferences and make a note of the path
under "Sketchbook location." Go to the Finder/File Explorer
and locate the sketchbook directory. Here's where you can
expect to find it:

macOS: /Users/your_username/Documents/Arduino/
Windows: C:\Users\your_username\Documents\Arduino\
Linux: /Users/your_username/Arduino/

In the sketchbook directory, look for a directory called tools. If
you don't see one, you can create it yourself.

Move the ESP8266FS directory from your Downloads folder to
the tools directory.

Quit the Arduino IDE and reopen it. In the Tools menu, you
should now see ESP8266 Sketch Data Upload as one of the
options.

https://github.com/esp8266/arduino-esp8266fs-plugin/releases
https://github.com/esp8266/arduino-esp8266fs-plugin/releases

➡ Upload files with plugin
To download the code you'll need, go to the following URL:

https://github.com/iffybooks/pocket-wifi-portal

Click the green Code button, then click Download ZIP.

Find the file you just downloaded in your Finder/File Explorer
(pocket-wifi-portal-main.zip) and unzip it. Open the directory.

In a new Finder/File Explorer window, open your Arduino
sketchbook directory. In the directory
pocket-wifi-portal-main/04_Captive_portal_approach_2,
you'll find a directory called Free_Reading_Wifi. Drag the
directory Free_Reading_Wifi into your Arduino sketchbook
folder.

https://github.com/iffybooks/pocket-wifi-portal

Open the directory Free_Reading_Wifi and find the file
Free_Reading_Wifi.ino. Double click it to open the project in
the Arduino IDE.

In the menu bar, select Tools > ESP8266 Sketch Data Upload.
This plugin will look for a directory called data in the project
directory and upload its contents to SPIFFS storage on the
ESP8266.

When the upload is finished, you'll see the message SPIFFS
Image Uploaded beneath the code editor.

Click the Upload button in the top left to compile and upload
the project code to your Wemos D1 mini.

When the upload is done, you'll see Done uploading beneath
the code editor.

Look for the wi-fi network Free Reading Wifi. When you
connect, you should see a popup window that looks like this:

To make your own captive portal, you can edit the files in the
data directory. The HTML file index.html will always load first.

Here's what an tag looks like. Note that the path begins
with a slash (/).

<img src='/lawrence-liang-small.jpg'
alt='photo of Lawrence Liang speaking at a
podium' width='300' height='206'/>

And here's a link to another page:

About Lawrence Liang

Have fun!

➡ General tips
Don't make a page that says "You've been pwned!" or "Your
computer is now infected with a virus." You'll scare people for
no reason.

Don't use an SSID that's the same or similar to one from a
specific business or institution. Calling your network "Starbucks
wifi," for example, could potentially get you in legal trouble.

➡ Credits
Method 1 is based on the following 2 tutorials:

- https://gist.github.com/Cyclenerd/7c9cba13360ec1ec9d
2ea36e50c7ff77

- http://melissamerritt.epizy.com/wifi-joke/wifi-joke.html

Method 2 is based on this project:

- https://git.vvvvvvaria.org/then/ESP8266-captive-ota-spiffs

https://gist.github.com/Cyclenerd/7c9cba13360ec1ec9d2ea36e50c7ff77
https://gist.github.com/Cyclenerd/7c9cba13360ec1ec9d2ea36e50c7ff77
http://melissamerritt.epizy.com/wifi-joke/wifi-joke.html
https://git.vvvvvvaria.org/then/ESP8266-captive-ota-spiffs

Published February 2022

Philadelphia, Pennsylvania

Version 0.6

e

Download this zine as a PDF:
https://iffybooks.net/pocket-wifi-portal

Anti-copyright,
no rights reserved.

