
Make noise
music with

MicroPython
and a Pi Pico

a how-to guide from
Iffy Books

Published November 2021

Philadelphia, Pennsylvania

Version 0.95

e

Download this zine as a PDF:
https://iffybooks.net/noisemusic

319 N. 11th St. #3D
Philadelphia, PA 19107

Join our email list
at iffybooks.net

Follow @iffybooks
on social media

Send corrections to
iffybooks@protonmail.com

The Raspberry Pi Pico is
a cheap, versatile
microcontroller you can
use for DIY projects.
MicroPython is a
language you can use to
program it.
Playing noise music at a DIY show (ideally in someone's
basement) is a tried-and-true strategy for participating in
music culture without really knowing how to play an
instrument. With noise music, it's OK if there isn't any
discernible key or tempo. You don't need to write lyrics or
even make eye contact with the audience! You just need
one thing: a weird little sound gadget (other than a
computer/phone) that you can connect to your friend's
roommate's PA system.

First, this zine will show you how to connect your
Raspberry Pi Pico to an audio jack or small speaker using
a GPIO pin and a ground pin. Then you'll use
MicroPython to generate audio, which will sound grainy
like an old video game.

You'll use an application called Thonny to write your
MicroPython code and program your Pi Pico. Thonny is
available for macOS, Windows, and Linux, and it's easy to
install. Even if you've never programmed before, you can
copy the provided code and start making modifications.

Attribution-ShareAlike 4.0
International (CC BY-SA 4.0)

https://creativecommons.org/licenses/by-sa/4.0/

➡ Get to know your Raspberry Pi Pico
Unlike other Raspberry Pi devices, the Raspberry Pi Pico
isn't a complete desktop computer. Instead, it runs the
same program (written in MicroPython, C, or C++) every
time it turns on. And you won't need a microSD card to
use it, since it has 2 MB of internal storage.

The Pi Pico is built around the RP2040, a 133 MHz
microcontroller chip designed by Raspberry Pi in the UK.
It has 40 input-output pins, which includes 26
multi-function GPIO (general purpose input-output)
pins and 8 ground pins. Each pin is labeled on the back of
the board.

A GPIO pin works like a tiny switch. At any given time, it
can be on (high voltage) or off (low voltage). Because
audio signals require smooth waves, your Rasperry Pi
Pico will use a technique called pulse-width modulation
(PWM). Using PWM, your Pi Pico will turn the GPIO pin on
and off very quickly, allowing it to simulate a recognizable
audio signal.

Your Raspberry Pi Pico has a micro USB port for power
and data connections. The USB port typically supplies 5
volts (V), but you can use any voltage from 1.8V to 5.5V.
The board's internal circuitry uses 3.3V.

The Pi Pico has a single button labeled BOOTSEL, which
you’ll use when you install MicroPython on the board for
the first time. MicroPython is a slightly modified version
of the Python programming language designed for
microcontrollers.

➡ More Raspberry Pi Pico audio projects

If you want to generate tonal melodies, you may find the
example code in this tutorial helpful:

"How to Use a Buzzer to Play Music with Raspberry Pi
Pico" by Avram Piltch
https://www.tomshardware.com/how-to/buzzer-music-ra
spberry-pi-pico

To generate chords and arpeggios, check out the
buzzer_music library:
https://github.com/james1236/buzzer_music

➡ Install Thonny
Note: This step and the following one are adapted from the
article "Getting started with Raspberry Pi Pico," which is
published under a Creative Commons license:
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

On Windows, macOS, and Linux, you can install the latest
Thonny IDE or update an existing version.

In a web browser, navigate to thonny.org.

In the top right-hand corner of the browser window, you
will see download links for Windows and macOS, and
instructions for Linux.

In the ideal case, you would run your Pi Pico's audio
output into a mixer, which would then connect to the PA
via XLR cables. To connect your Pi Pico to a mixer, you'll
likely need a 1/8"-to-RCA adapter like the one below. (You
might even be able to plug RCA cables directly into the
PA.)

You probably shouldn't connect your Pi Pico directly to a
guitar amp, because the higher-than-expected voltage
might damage its circuitry. But if you don't have another
option, using a lower number in the buzzer.duty_u16()
function could potentially make it a little safer. If you do
go this route, you should plug your Pi Pico into a guitar
pedal first to limit the potential damage.

Download the relevant files and run them to install
Thonny.

Open Thonny from your application launcher. It should
look something like this:

You’re now ready to move on to the next step and
connect your Raspberry Pi Pico.

➡ Connect your Pi Pico to an amplifier

It's important to turn down the volume on your audio
equipment before testing your Pi Pico noise machine.
Start playing some audio on your Pi Pico, then slowly turn
up the volume knob on the PA/amplifier/stereo until you
get to the right level. It's easy to make a loud noise by
mistake and hurt your ears.

Also, you should wear ear plugs if you'll be listening to
loud music for a long time. 🙂

You'll need some kind of cable to connect your device's
3.5mm audio jack to a PA system. If the PA has 1/4"
unbalanced line-level inputs, you can use a 1/8"-to-1/4"
adapter cable. Or just use a 1/8" audio cable and an
adapter like this:

➡ Add the MicroPython firmware
If you have never used MicroPython on your Raspberry Pi
Pico, you will need to add the MicroPython firmware.

Plug your micro USB cable into the port on the board.

Find the BOOTSEL button on your Raspberry Pi Pico.

Press the BOOTSEL button and hold it while you connect
the other end of the micro USB cable to your computer. A
Raspberry Pi is shown in the image below, but the same
applies to any computer.

This puts your Raspberry Pi Pico into USB mass storage
device mode.

In the bottom right-hand corner of the Thonny window,
you will see the version of Python that you are currently
using.

➡ Trigger sounds using multiple pins

The code below uses if and elif conditional statements to
play different sounds when you touch your wire stylus to
the pins GP2, GP3, or GP4.

from machine import Pin, PWM
from utime import sleep
import random

Set GPIO pin for audio output
buzzer = PWM(Pin(15))

def play_tone(frequency):
Set maximum volume
buzzer.duty_u16(1000)
Play tone
buzzer.freq(frequency)

def be_quiet():
Set minimum volume
buzzer.duty_u16(0)

Set GPIO pins to use for switches
switch_1 = Pin(2, Pin.IN, Pin.PULL_DOWN)
switch_2 = Pin(3, Pin.IN, Pin.PULL_DOWN)
switch_3 = Pin(4, Pin.IN, Pin.PULL_DOWN)

Infinite loop
while True:

Continuous tone
if switch_1.value():

Set tone frequency
play_tone(65)

Fast falling tone
elif switch_2.value():

Set a random starting frequency
start_value = random.randint(150,1450)
Play falling frequencies
for i in range(48):

play_tone(start_value - i)
sleep(0.001)

Falling and rising glide
elif switch_3.value():

Set a random starting frequency
start_value = random.randint(120,220)
Play repeatedly falling frequencies
for i in range(-90,90):

play_tone(start_value + abs(i))
sleep(0.008)

else:
be_quiet()
sleep(0.05)

Click on the Python version and choose ‘MicroPython
(Raspberry Pi Pico)’:

If you don’t see this option, then check that you have
plugged in your Raspberry Pi Pico.

A dialog box will pop up to install the latest version of the
MicroPython firmware on your Raspberry Pi Pico.

Click the Install button to copy the firmware to your
Raspberry Pi Pico.

Wait for the installation to complete and click Close.

➡ Create a falling and rising glide

The code below uses a for loop with the function
range(-90,90) to loop through each integer from -90 to
positive 89. It then uses the function abs(i) to convert the
current number to a positive value and adds it to the
random starting frequency. The play_tone() function
plays the tone, and the sleep() function pauses for 0.00
seconds while it plays.

from machine import Pin, PWM
from utime import sleep
import random

Set GPIO pin for audio output
buzzer = PWM(Pin(15))

def play_tone(frequency):
Set maximum volume
buzzer.duty_u16(1000)
Play tone
buzzer.freq(frequency)

def be_quiet():
Set minimum volume
buzzer.duty_u16(0)

Set GPIO pins to use for switches
switch = Pin(2, Pin.IN, Pin.PULL_DOWN)

Infinite loop
while True:

Falling and rising glide
if switch.value():

Set a random starting frequency
start_value = random.randint(120,220)
Play repeatedly falling frequencies
for i in range(-90,90):

play_tone(start_value + abs(i))
sleep(0.008)

else:
be_quiet()

➡ Connect an audio jack or speaker
to your Pi Pico
To send audio from your Pi Pico to an audio jack or
speaker, you'll need to connect wires to two pins: a GPIO
pin and a ground pin (labeled GND). The GPIO pin will
provide electrical current with an oscillating voltage level,
which your speaker will convert into sound.

Here are some possible ways to connect a speaker to
your Pi Pico:

- use a piezo buzzer
- use a quarter-sized ~0.25 Watt speaker
- use a pair of headphones connected with alligator

clips
- use an audio jack connected to headphones, a

powered speaker, a PA system

This tutorial will focus on connecting an audio jack to
your Pi Pico, but you can follow the same steps if you're
using a speaker.

First, you'll need to strip the ends of your wires. Use wire
strippers (or scissors) to remove the insulation from the
end of each wire, leaving about half an inch of exposed
wire. Gently twist the strands of each wire together to
keep them from fraying.

➡ Create a fast descending tone

To make a tone that falls in frequency, you can use a for
loop. The example code below starts with a random
frequency value. Then it uses a for loop with the range()
function to iterate through a series of numbers from zero
to 47. The variable i represents the current number in the
series. For each iteration of the for loop, the code below
subtracts the number i from the starting frequency and
plays a tone at that frequency for 0.001 seconds. Try
adjusting the number in the sleep() function and see how
it changes the sound.

from machine import Pin, PWM
from utime import sleep
import random

Set GPIO pin for audio output
buzzer = PWM(Pin(15))

def play_tone(frequency):
Set maximum volume
buzzer.duty_u16(1000)
Play tone
buzzer.freq(frequency)

def be_quiet():
Set minimum volume
buzzer.duty_u16(0)

Set GPIO pins to use for switches
switch = Pin(2, Pin.IN, Pin.PULL_DOWN)

Infinite loop
while True:

Fast descending tone
if switch.value():

Set a random starting frequency
start_value = random.randint(150,1450)
Play falling frequencies
for i in range(48):

play_tone(start_value - i)
sleep(0.001)

else:
be_quiet()

The example project uses red and black wires. The red
wire will be the signal wire, and the black wire will be the
ground wire. The signal wire will connect to a GPIO pin
on your Pi Pico, and will carry the audio signal to the
speaker. The ground wire will connect to a ground pin,
letting electricity flow back into the Pi Pico. (It doesn't
matter what wire colors you use, but you should decide
which is which.)

Here's what a tip ring sleeve (TRS) stereo audio plug
looks like. It has three metal contacts: The tip carries the
audio signal for the left channel, and the ring carries the
signal for the right channel. The sleeve is the ground.

If you’re using an audio jack like the one below, connect
your ground wire to the sleeve (S) terminal and tighten
the screw to secure the wire. If you're using an audio jack
without screws, use the terminal that will connect to an
audio plug’s sleeve (the metal contact closest to the base
of the plug).

Infinite loop
while True:
Continuous tone
if switch_1.value():
Set tone frequency
play_tone(65)

else:
be_quiet()

Here's what your updated script will look like (new code in
bold):

from machine import Pin, PWM
from utime import sleep
import random

Set GPIO pin for audio output
buzzer = PWM(Pin(15))

def play_tone(frequency):
Set maximum volume
buzzer.duty_u16(1000)
Play tone
buzzer.freq(frequency)

def be_quiet():
Set minimum volume
buzzer.duty_u16(0)

Set GPIO pin to use for a switch
switch = Pin(2, Pin.IN, Pin.PULL_DOWN)

Infinite loop
while True:

Continuous tone
if switch.value():

Set tone frequency
play_tone(65)

else:
be_quiet()

If you're using a stereo audio jack, you can connect the
signal wire to the tip (T) terminal to play audio only in the
left channel. Or you can connect it to the ring (R) terminal
to play through the right channel.

To play your audio through left and right channels
simultaneously, you can connect the tip and ring
terminals with a piece of wire.

Tighten the remaining terminal screws to secure the wires
in place.

Infinite loop
while True:

frequency_value = random.randint(50,3000)
play_tone(frequency_value)
sleep(0.75)
be_quiet()
sleep(0.75)

➡ Use a wire as a stylus to trigger a tone

Strip both ends of a piece of wire. Insert one end into the
3v3 pin hole and secure it in place with a toothpick, or
solder it if you wish. To trigger a tone, you'll touch the
other end of the wire to a GPIO pin of your choice.

Before the while loop in your program, add the following
line of code to set up the GPIO pin you'll use for your
switch. The example uses pin 2 (labeled GP2 on your
board).

Set GPIO pin to use for switches
switch_1 = Pin(2, Pin.IN, Pin.PULL_DOWN)

Next you'll use an if … then statement to check whether
the jumper cable is connected to the chosen GPIO pin.
When your jumper cable is connected, the method
switch_1.value() will return True. Otherwise it will return
False and the be_quiet() function will run instead.

Update your while loop to match the example below.
When the jumper wire is connected to GP2, the
play_tone(65) function will play a 65 Hz tone. When the
jumper cable is disconnected, the be_quiet() function will
stop the sound.

Next you’ll connect the signal wire (red) from your audio
jack or speaker to the pin labeled GP15. And you’ll
connect your ground wire to a pin labeled GND for
ground.

This tutorial uses GPIO pin 15 for the audio signal. If
you're looking at the back of your Pi Pico, GP15 is at the
bottom right corner. There's a ground pin two spaces
away. (Note that all the ground pins have square outlines,
while the rest are round.)

Note: You can use any GPIO pin you want, as long as
the pin number matches your code. It never matters
which ground pin you use.

Insert your ground wire into a ground pin hole (marked
GND). To make sure the wire stays connected, try
wedging a round toothpick into the hole alongside the
wire. You can also use masking tape to keep it in place

In the Thonny menu bar, select File > Save. Click Save to
Raspberry Pi Pico, then save your file with the name
main.py. If you use a different filename, your program
won't run when you plug in your Pi Pico.

Unplug your Pi Pico from your computer and then plug it
back in (or try using a different power source). As soon as
you plug it in, it should run your program and start
beeping.

➡ Make your Pi Pico beep at random
frequencies

To make your program beep at random frequencies,

Add the line import random to the beginning of your
program to import the random module. You can then
use the random.randint() function to select random
frequency values.

The sample code below uses random.randint(50,3000)
to select a random frequency from 50 Hz to 3000 Hz.

from machine import Pin, PWM
from utime import sleep
import random

Set GPIO pin for audio output
buzzer = PWM(Pin(15))

def play_tone(frequency):
Set maximum volume
buzzer.duty_u16(1000)
Play tone
buzzer.freq(frequency)

def be_quiet():
Set minimum volume
buzzer.duty_u16(0)

Continued on the next page ...

(not very reliable), or use solder if you want the
connection to be permanent.

Note: If you're connecting a speaker directly to your Pi
Pico and you aren't sure which wire is which, don't
stress too much. It will probably work either way.

Once your ground wire is connected, you'll connect the
signal wire (red in the example) to GP15. Insert the wire
in the hole and wedge it in with another toothpick. When
you're done, your board should look like this:

Infinite loop
while True:

play_tone(65)
sleep(0.75)
be_quiet()
sleep(0.75)

A tone with a frequency of 65 Hz contains 65 sound
pressure oscillations per second. For reference, keys on a
piano range from ~28 Hz to ~4186 Hz, with middle C at
~262 Hz.

Here's what your script will look like when you're done:

from machine import Pin, PWM
from utime import sleep

Set GPIO pin for audio output
buzzer = PWM(Pin(15))

def play_tone(frequency):
Set maximum volume
buzzer.duty_u16(1000)
Play tone
buzzer.freq(frequency)

def be_quiet():
Set minimum volume
buzzer.duty_u16(0)

Infinite loop
while True:

play_tone(65)
sleep(0.75)
be_quiet()
sleep(0.75)

Click the Play icon at the top of the Thonny window to
run your program on your Pi Pico. You should hear
beeping!

Make sure the ends of your wires aren't touching each
other, or any other pins.

Now you can use a 1/8" (a.k.a. 3.5mm) audio cable to plug
your Pi Pico into headphones, a powered speaker, or a PA
system

➡ Make your Pi Pico beep like an alarm

Important note: If you're using a powered speaker, start
with the volume low and turn it up slowly while your Pi
Pico is playing sound. If you're using headphones, test the
volume away from your ears first.

Plug your Raspberry Pi Pico into your computer with a
micro USB cable.

Open Thonny and you'll see a blank file where you'll write
your code. You can transcribe the code examples by hand
if you want, or find the code at the following URL:

https://iffybooks/noisemusic

At the beginning of your program, you'll import the Pin
and PWM functions from the machine module. Then
you'll import the sleep function from utime.

from machine import Pin, PWM
from utime import sleep

Then you'll create a variable called buzzer that
you'll use to control your audio output. The code
below specifies GPIO pin 15 for audio output.

Set GPIO pin for audio output
buzzer = PWM(Pin(15))

Note: In MicroPython, lines that begin with the
pound sign (#) are comments, not code. You can
safely omit those lines, or write your own
comments.

Next you'll define two functions: one for noise and one
for silence. The first is called play_tone(), which takes a
value called frequency as input. First, the
buzzer.duty_u16(1000) function sets the volume to the
maximum level. Then the buzzer.freq(frequency)
function sets the frequency of the tone in hertz (Hz).

def play_tone(frequency):
Set maximum volume
buzzer.duty_u16(1000)
Play tone
buzzer.freq(frequency)

Note: When you're writing MicroPython code, indentations
matter. Use spaces or tabs (either are fine) to indent each
line of code to match the examples.

Your next function, called be_quiet(), plays silence. It
simply uses the function buzzer.duty_u16(0) to set the
volume to the minimum level.

def be_quiet():
Set minimum volume
buzzer.duty_u16(0)

Next you'll create an infinite while loop, which will
repeatedly run the block of code beneath. In the example
code, the play_tone(65) function will play a 65 Hz tone.
The function sleep(0.75) will pause for 0.75 seconds while
the tone plays. Then the be_quiet() function will silence
the tone, and the sleep(0.75) function will pause for
another 0.75 seconds.

