
Program a
Digispark

mouse jiggler

a how-to guide from
Iffy Books

Published December 2021

Philadelphia, Pennsylvania

Version 0.75

e

Download this zine as a PDF:
https://iffybooks.net/mousejiggler

No rights reserved.

319 N. 11th St. #3D
Philadelphia, PA 19107

Join our email list
at iffybooks.ne

Follow @iffybook
on social media

Send corrections to
iffybooks@protonmail.co

A Digispark is a tiny
microcontroller board
(similar to an Arduino)
that can connect to a
computer's USB port
and pretend to be a
mouse or keyboard.
This zine will teach you to program a Digispark mouse jiggler using
the Arduino programming language. When you plug your Digispark
clone into a computer's USB port, it will quietly jiggle the mouse
cursor to prevent the computer from going to sleep. You'll also
learn to program a keyboard simulator, which can type any
sequence of keys you want.

The Digispark is built around the ATtiny85, a microcontroller chip
developed by the company Atmel (based in San Jose, CA and
acquired by Microchip Technology in 2016). The ATtiny85 has 8 KB
of flash memory and a clock speed of 20 MHz.

To make the ATtiny85 chip easier to use for DIY projects, the
company Digistump (based in Portland, OR) created the Digispark.
They don't sell Digispark boards anymore, but it's easy to find
cheap clones based on their designs. This tutorial uses a Digispark
Rev.3 clone that looks like this:

The Digispark has a built-in USB interface, a 500mA 5V regulator, 6
I/O Pins, and 8KB of flash memory (~6KB available after writing the
USB bootloader). It has two LEDs: a green one for power, and a red
one you can control using code. You'll program your Digispark
clone using the Arduino IDE (integrated development
environment).

This tutorial includes instructions for macOS, Windows and
Ubuntu. (With macOS, your computer might not recognize the
Digispark as a USB mouse every time you plug it in. Unplug and
plug it back in a few times, and it should work.)

Note: If you're using a Digispark clone that doesn't have a USB
bootloader installed, read the appendix first to learn how to
burn Micronucleus to your device.

➡ Install the Arduino IDE (Ubuntu and
similar)
The Arduino IDE (integrated development environment) is the
application you'll use to program your Digispark clone.

Installation method 1: Snap package manager

Open a terminal window and run the following command to install
the Arduino IDE using the Snap package manager. You'll need to
enter your password, and it will take a few minutes to install.

sudo snap install arduino

Now run the following command to add your username to the
dialout group. This will let you program the board via USB.

sudo usermod -a -G dialout $USER

Restart your computer.

Open a terminal window and run the command arduino to start
the Arduino IDE.

Installation method 2: APT package manager

Depending on the version of Ubuntu you're using, you may be able
to install Arduino using the APT package manager. Simply type the
following command in a terminal window and press enter. You'll
need to enter your password, and it will take a few minutes to
install.

sudo apt-get install arduino

Now run the following command to add your username to the
dialout group. This will let you program the board via USB.

sudo usermod -a -G dialout $USER

Run the command arduino to start the Arduino IDE.

Installation method 3: Installer Script

Go to the following URL and follow the steps to install the Arduino
IDE using the installer script from https://arduino.cc:

https://linoxide.com/how-to-install-arduino-ide-on-ubuntu-20-04

➡ Install the Arduino IDE (macOS)
If you're using macOS, you'll need version 2.0 of the Arduino IDE,
which is currently in beta. To download it, go to the following URL
and click MacOS.

https://www.arduino.cc/en/software#experimental-software

Open the .dmg file you just downloaded and drag the Arduino IDE
application file to your Applications folder.

Note: The pinout diagram below is for the pins on the USBASP
device, without the ribbon wire attached.

Once the wires are connected, plug the USBASP into your
computer's USB port. A green light on your Digispark clone will turn
on.

Run the following command to flash the Micronucleus firmware to
your Digispark. (Replace line breaks with spaces.)

avrdude -c USBasp -p attiny85 -U lfuse:w:0xe1:m
-U hfuse:w:0xdd:m -U efuse:w:0xfe:m -B 20

/<add path here>/t85_default.hex

If you're successful, you'll see a confirmation in the terminal.
Disconnect the USBASP from your USB port, then disconnect the
wires from the Digispark. Now you can program your Digispark
clone from the Arduino IDE!

➡ Install the Arduino IDE (Windows)
Go to the following URL and download the Arduino IDE for
WIndows. Follow the instructions to install it on your machine.

https://www.arduino.cc/en/software

Next, go to the following URL (all one line) to download the
Digistump driver. Follow the provided installation instructions.

https://github.com/digistump/DigistumpArduino/releases/
download/1.6.7/Digistump.Drivers.zip

➡ Install Digistump software package
When you open the Arduino IDE, you'll see a window that looks like
the one below. Before you write any code, you'll need to install a
package with the software required to program your Digispark
clone.

If you want to install a bootloader on your Digispark clone, this
how-to guide is a good place to start:

https://asdasd.page/2021/Program-Bootloader-of-Digispark-ATTiny
85-with-A-ISP-Programmer/

Here's a brief summary of what you'll need to do:

First, run the following command to download the Micronucleus
bootloader firmware for the ATtiny85:

git clone https://github.com/micronucleus/micronucleus.git

Next you'll install the command-line program avrdude. On Ubuntu
(or similar), you can use the command sudo apt-get install
avrdude.

On macOS you can use brew install avrdude. (You'll need to
install the Homebrew package manager first: https://brew.sh.)

If you're using Windows, go to the following URL and follow the
instructions to install WinAVR:

http://www.ladyada.net/learn/avr/setup-win.html

Now you'll use wires to connect the pins on your USBASP to the
pins on your Digispark clone. Here are the connections you'll need
to make:

- MOSI (Pin1) from the programmer to MOSI (PB0) on the
board

- MISO (Pin9) from the programmer to MISO (PB1) on the
board

- RES (Pin5) from the programmer to RESET (PB5) on the
board

- SCK (Pin7) from the programmer to SCK (PB2) on the board
- VCC (VTG Pin2) from the programmer to VCC on the board
- GND (Pin4,6,8,10) from the programmer to GND on the

board

In the menu bar, select File > Preferences. (Or Arduino >
Preferences on macOS.)

Add the following URL (without the line break) to the list of
Additional Boards Manager URLs, then click OK.

https://raw.githubusercontent.com/ArminJo/DigistumpArduino/
master/package_digistump_index.json

Close and relaunch the Arduino IDE.

➡ More Digispark resources
● Official Digispark wiki

https://digistump.com/wiki/digispark

● "USB Rubber Ducky: A Cheeky Prank Device" by Johann Wyss
https://diyodemag.com/projects/usb_rubber_ducky

● DigiSpark Scripts by CedArctic (including pranks and
malicious code)
https://github.com/CedArctic/DigiSpark-Scripts

● This article by Eric Draken will show you how to emulate
specific mouse and keyboard devices:
https://ericdraken.com/usb-mouse-jiggler

➡ Appendix: Burn Micronucleus bootloader to a
Digispark using USBASP programmer

If you're using a plain Digispark clone that doesn't have a
bootloader, you'll need to flash one to the device before you
program it with the Arduino IDE. Since a bootloader is required to
start a USB connection, you won't be able to flash the bootloader
over USB. Instead, you'll use a USB-ISP (in-system programmer)
device such as the USBASP (below). You can find one online for
around $10.

In the menu bar, go to Tools > Board > Boards Manager….

In the search box at the top of the Boards Manager window, type
"digistump." Look for the package called Digistump AVR Boards
and click Install. Installation will take a minute or so.

You may need to click Install again to get the latest version of the
package (version 1.7.5 as of December 2021).

Click Close to exit the Boards Manager window.

In the menu bar, go to Tools > Board > Digistump AVR Boards
and select Digispark.

➡ Completely reset the Arduino IDE
If something goes wrong with the Arduino IDE, you may need to
reset its packages and settings. First, quit the application.

On Linux, run the following command to delete the directory that
contains the Arduino IDE's packages and settings:

rm -rf ~/.arduino15/

If you're using macOS, open Terminal and run the following
command instead:

rm -rf ~/Library/Arduino15/

On Windows, open PowerShell and run the following command:

rd /s /q C:\Users\{username}\AppData\Local\Arduino15

➡ View connected USB devices
If you're using Ubuntu (or similar), open a terminal window and run
the following command to see a list of connected USB devices:

lsusb

On macOS, open Terminal and use this command:

system_profiler SPUSBDataType

If you're using Windows 10 or higher, open PowerShell and run the
following command to view connected USB devices.

pnputil /enum-devices | findstr USB

Under Tools > Clock in the menu bar, select 16.5 MHz - for V-USB.

Finally, go to Tools > Programmer and select micronucleus.2.5.

You're now ready to program your Digispark clone. Nice work!

➡ Make the LED blink
As a test, let's make the red LED on your Digispark blink on and off.
Type out the example code in the Arduino IDE, or download it from
the following URL:

https://iffybooks.net/mousejiggler

#include <DigiMouse.h>

void setup(){
pinMode(1, OUTPUT);
DigiMouse.begin();

}

void loop() {
digitalWrite(1, HIGH);
DigiMouse.delay(1000);
digitalWrite(1, LOW);
DigiMouse.delay(1000);

}

The first line of code, #include <DigiMouse.h>, imports the mouse
software you'll use.

➡ Random string generator
This program types a pseudorandom series of letters and
numbers. The function randomSeed(analogRead(5)) uses
random noise from pin 5 to seed the random number generator.

#include <DigiKeyboard.h>

void setup(){
// Seed pseudorandom generator using noise from pin 5
randomSeed(analogRead(5));

}

void loop() {
//Choose a random key code
unsigned int char_number = random(4, 40);

//Type key
DigiKeyboard.sendKeyStroke(char_number);

// Pause for 0.1 second
DigiKeyboard.delay(100);

}

➡ Save and close everything
The code below presses Ctrl+S and Ctrl+W repeatedly.

#include <DigiKeyboard.h>

void setup(){}

void loop() {
// Pause for 1.5 seconds
DigiKeyboard.delay(1500);

// Press Ctrl+S (or command+S for macOS)
DigiKeyboard.sendKeyStroke(KEY_S, MOD_CONTROL_LEFT);
//DigiKeyboard.sendKeyStroke(KEY_S, MOD_GUI_LEFT);

// Pause for 1.5 seconds
DigiKeyboard.delay(1500);

// Press Ctrl+W (or command+W for macOS)
DigiKeyboard.sendKeyStroke(KEY_W, MOD_CONTROL_LEFT);
//DigiKeyboard.sendKeyStroke(KEY_W, MOD_GUI_LEFT);

}

When you plug your Digispark clone into a computer's USB port, it
will automatically run a function called setup(), then a function
called loop(). In the example code, setup() has two lines of
code:

1. The function pinMode(1, OUTPUT) sets pin 1 to accept
output. Pin 1 controls the red LED.

2. The DigiMouse.begin() function initializes the mouse
software.

The loop() function runs next, executing the same four lines of
code infinitely:

1. The function digitalWrite(1, HIGH) turns the red LED
on.

2. The function DigiMouse.delay(1000) pauses for 1
second.

3. The function digitalWrite(1, LOW) turns the red LED
off.

4. The function DigiMouse.delay(1000) pauses for 1
second.

If you've written code in C, C++, or Java, the syntax of the Arduino
programming language will look familiar. Curly brackets ({}) are
used to enclose code inside loops and function definitions. After
each code statement, you'll need to use a semicolon (;).
Whitespace (spaces, tabs, line breaks) doesn't affect your code.

Functions, such as DigiMouse.delay(1000) or
digitalWrite(1, HIGH), can accept one or more arguments
(i.e., input values) in the parentheses following the function name.

➡ Some useful DigiKeyboard functions

DigiKeyboard.print("Hello!") Types the characters "Hello!"
(without quotation marks)

DigiKeyboard.sendKeyStroke(KEY_S,
MOD_CONTROL_LEFT);

Presses Ctrl + S
(Windows/Linux shortcut)

DigiKeyboard.sendKeyStroke(KEY_S,
MOD_GUI_LEFT);

Presses Command + S (macOS
shortcut)

DigiKeyboard.sendKeyStroke(KEY_ENTER); Presses enter

DigiKeyboard.sendKeyStroke(KEY_SPACE); Presses the space bar

DigiKeyboard.sendKeyStroke(random(4,
40));

Presses a random letter or
number

You can reference the complete list of key codes and names in the
file DigiKeyboard.h, which you can find at the following URL:

https://github.com/digistump/DigisparkArduinoIntegration/blob/
master/libraries/DigisparkKeyboard/DigiKeyboard.h

Click the Verify icon to compile your code. You'll be prompted to
save your project first.

If your code compiled successfully, you'll see a message like this:

Make sure your Digispark is disconnected from your computer.
Then click the Upload icon at the top of the Arduino IDE.

At the bottom of the Arduino IDE window, you'll see a message that
says "Plug in device now… (will timeout in 60 seconds)."

➡ Program a keyboard simulator
In addition to simulating a mouse, your Digispark clone can
pretend to be a keyboard. The code below types the sentence "This
is a test!", then presses enter and pauses for 500 milliseconds, or
0.5 seconds.

#include <DigiKeyboard.h>

void setup() {}

// Infinite loop
void loop() {

DigiKeyboard.sendKeyStroke(0);
DigiKeyboard.delay(500);
DigiKeyboard.print("This is a test!");
DigiKeyboard.sendKeyStroke(KEY_ENTER);

}

Including the function DigiKeyboard.sendKeyStroke(0) at the
beginning of the loop isn't required, but it helps ensure the first
real keystroke doesn't get cut off.

The example code below types "https://iffybooks.net", then presses
enter. Then a for loop at the end runs infinitely, which effectively
disconnects the device.

#include <DigiKeyboard.h>

void setup() {
pinMode(1, OUTPUT); //LED on Model A

}

// Continued on the next page …
void loop() {

DigiKeyboard.sendKeyStroke(0);
DigiKeyboard.delay(500);
DigiKeyboard.print("https://iffybooks.net");
DigiKeyboard.sendKeyStroke(KEY_ENTER);
for(;;){/*Infinite loop to disconnect device*/}

}

Plug your Digispark into a USB port on your computer and wait a
few moments for your code to upload. If it's a success, you'll see
"upload complete" in the console.

When the upload is done, the red light on the board should start
blinking on and off.

Disconnect the Digispark from your computer and plug it back in. It
should start blinking again. Pretty neat!

➡ Program a basic mouse jiggler
The example code below will move the mouse cursor in a 20-pixel
square every 2 seconds.

First, the setup() function runs two lines of code:
pinMode(1, OUTPUT) sets up pin 1 for output, which lets you
control the red LED. Next, DigiMouse.begin() initializes the
DigiMouse software.

When the loop() function runs, the code within will repeat
infinitely. First, DigiMouse.delay(2000) pauses for 2000
milliseconds, or 2 seconds. Next, DigiMouse.moveX(20) moves
the mouse to the right 20 pixels, followed by a 0.1-second pause.
Then the DigiMouse.moveY(20) moves the mouse 20 pixels
down, and so on.

Finally, the functions digitalWrite(1, HIGH) and
digitalWrite(1, LOW) turn the LED on for 0.25 seconds.

➡ Program a random clicker
The program below moves the mouse cursor -250 to 250 pixels in
each direction, with the distance selected at random. This one
works well for clicking around on Wikipedia.

#include <DigiMouse.h>

void setup(){
pinMode(1, OUTPUT);
DigiMouse.begin();

// Turn on LED for 0.25 seconds
digitalWrite(1, HIGH);
DigiMouse.delay(250);
digitalWrite(1, LOW);

}

void loop() {
// Choose x and y values from -250 to 250
unsigned int random_x = 250 - random(501);
unsigned int random_y = 250 - random(501);

DigiMouse.move(random_x, random_y, 0);
DigiMouse.delay(500);
DigiMouse.leftClick();
DigiMouse.delay(10);
DigiMouse.setButtons(0);
DigiMouse.delay(random(5000));

}

#include <DigiMouse.h>

void setup(){
pinMode(1, OUTPUT);
DigiMouse.begin();

}

void loop() {
DigiMouse.delay(2000);

DigiMouse.moveX(20);
DigiMouse.delay(100);

DigiMouse.moveY(20);
DigiMouse.delay(100);

DigiMouse.moveX(-20);
DigiMouse.delay(100);

DigiMouse.moveY(-20);
DigiMouse.delay(100);

// Turn on LED for 0.25 seconds
digitalWrite(1, HIGH);
DigiMouse.delay(250);
digitalWrite(1, LOW);

}

➡ Some useful DigiMouse functions

Function What it does

DigiMouse.begin(); Initializes the software you'll
use to control your mouse.
Typically included in the
setup() function.

DigiMouse.delay(1000); Pauses for 1000 milliseconds
(1 second)

DigiMouse.moveX(20); Moves the cursor 20 pixels to
the right

void loop() {
// Choose x and y values from -3 to 3
unsigned int random_x = 3 - random(7);
unsigned int random_y = 3 - random(7);

// Move the mouse cursor
DigiMouse.moveX(random_x);
DigiMouse.moveY(random_y);

// Turn on the LED for 0.25 seconds
digitalWrite(1, HIGH);
DigiMouse.delay(250);
digitalWrite(1, LOW);

// Pause for 5 to 10 seconds
DigiMouse.delay(5000 + random(5000));

}

➡ Program an infinite scroller
The code below uses DigiMouse.scroll(5) to scroll down
endlessly (or scroll up, depending on your mouse settings). To
change the scroll direction, use the argument -5 instead.

#include <DigiMouse.h>

void setup(){
pinMode(1, OUTPUT);
DigiMouse.begin();

// Turn on LED for 0.25 seconds
digitalWrite(1, HIGH);
DigiMouse.delay(250);
digitalWrite(1, LOW);

}

void loop() {
DigiMouse.scroll(5);
//DigiMouse.scroll(-5);
DigiMouse.delay(100);

}

DigiMouse.moveX(-20); Moves the cursor 20 pixels to
the left

DigiMouse.moveY(20); Moves the cursor down 20
pixels

DigiMouse.moveY(-20); Moves the cursor up 20 pixels

DigiMouse.move(15,-33,0); Moves the cursor 15 pixels
right and 20 pixels up, and
scrolls zero pixels

DigiMouse.scroll(10); Scrolls down 10 units (or up,
depending on your mouse
preferences)

DigiMouse.scroll(-10); Scrolls up 10 units (or down,
depending on your mouse
preferences)

DigiMouse.leftClick(); Presses down the left click
button

DigiMouse.setButtons(1<<0); Hold down the left click button

DigiMouse.setButtons(1<<1); Holds down the right click
button

DigiMouse.setButtons(0); Releases all mouse buttons

DigiMouse.update(); Preserves USB connection if
your mouse jiggler pauses for
more than a couple seconds

➡ Some useful Arduino functions

Example function What it does

pinMode(1, OUTPUT); Configures pin 1 (the red LED) to
behave as an output. You should
include this in your setup()
function.

digitalWrite(1, HIGH); Sets pin 1 to "high" voltage,
turning on the red LED light

digitalWrite(1, LOW); Sets pin 1 to "low" voltage, turning
off the red LED light

random(100); Returns a pseudorandom number
from 0 to 99

random(100, 2500); Returns a pseudorandom number
from 100 to 2499

➡ Program a low-key mouse jiggler
If you want your mouse jiggler's movements to be subtle, you can
write a program like the one below. It chooses random X and Y
values from -3 to 3, then moves the cursor that many pixels. It then
blinks the LED and pauses for a random duration from 5 to 10
seconds.

#include <DigiMouse.h>

void setup(){
DigiMouse.begin();
pinMode(1, OUTPUT);

}

//Continued on the next page ...

