

Python Turtle is a drawing tool
based on Logo, an educational
programming language
developed in the 1960s. Logo
was used widely in school
computer labs in the '80s and
'90s.
Here's how it works: The user types lines of code to control a
cursor onscreen, typically represented as a turtle. The turtle can
draw lines and curves as it walks around, creating geometric art.
The next step is to add a loop to your code, letting you repeat the
instructions as many times as you want.

We'll be using Python, a programming language that comes
preinstalled with many computer operating systems. Python is
really cool! It's relatively easy to learn, and it's used widely by
scientists, web developers, hackers, and just about everyone else.

In this workshop we'll be focusing on turtle, a module that comes
built-in with Python.

We'll also use IDLE, a program that lets you write and run Python
code.

At the Iffy Books computer lab we're using the Linux-based
operating system Ubuntu. If you're getting started on your home
computer, skip ahead to the section titled Using Python Turtle at
Home. Once Python 3, IDLE, and Tkinter are installed, you can
resume here.

▶ Open IDLE

❏ Start by opening the terminal application. Click the grid icon at
the bottom left corner of the screen and search for "terminal," or
click the terminal icon in the application bar.

❏ Type idle in the terminal and press enter to launch IDLE.

↳ If you're using macOS, you may need to use the command
idle3 instead.

When IDLE launches, you'll see a command prompt with three
angle brackets (>>>) on the left side.

➡ First Steps

❏ In the Idle command prompt, type the following command and
press enter. Nothing will happen, which is normal.

from turtle import *

You've just imported a collection of functions from the turtle
module, which we'll be using for the rest of this workshop.

❏ Type the command below and press enter. You'll see a window
pop up with a tiny turtle on a white background.

shape('turtle')

❏ Run this command to make the turtle walk forward 100 steps,
leaving a line behind it as it goes:

forward(100)

❏ Now use the left() function to make your turtle turn left 90
degrees.

left(90)

❏ Walk forward another 100 steps with forward() .

forward(100)

❏ If you want to reset everything and go back to the beginning, you
can use reset() .

reset()

❏ Try using right(90) and back(100) and see what happens.
Now try right(360) and back(600) .

🐢 Mini challenge

❏ Drawing a square or rectangle.

🐢 Mini challenge

❏ Draw an equilateral triangle (all three sides the same
length).

▶ Pen Up and Pen Down

So far your turtle has been in pen down mode, which means it
draws a line wherever it goes. Next you'll learn to use pen up
mode to move around without leaving a mark. You'll also learn to
draw circles.

❏ Run the reset() command to clear the canvas.

reset()

❏ Now run the following command to draw a circle with radius 30.

circle(30)

❏ Run the following commands one at a time and watch what
happens:

penup()
forward(100)
pendown()
circle(50)

🐢 Mini challenge

❏ Draw a series of circles that get smaller from left to right. If
you make a mistake, you can use reset() to clear the
canvas.

▶ Start editing a .py file

So far you've been running one line of code at a time, which is a
good way to learn the basics. The next step is to write several lines
of code and run them all at once. To do that, you'll need to store
your code in a .py file.

❏ In the toolbar, go to File > New File.

❏ A new text editor window will pop up. Type the lines below.

from turtle import *
shape('turtle')
forward(100)

❏ Go to Run > Run Module in the toolbar.

❏ You'll be prompted to save your file before running it. Click OK.

❏ Choose a filename and save your .py file somewhere
memorable.

Once your file is saved, your turtle drawing will get started.

Note that there's some text output in the IDLE shell window where
you were typing commands earlier. If you get an error, you can
check this window for details.

▶ Change Colors & Line Width

❏ Add the line width(5) to your code to make your line thicker.
Go to Run > Run Module in the toolbar or press F5 to run your
code.

from turtle import *
shape('turtle')
width(5)

circle(200)

❏ Now add the line color('purple') to make the line purple. Go
to Run > Run Module in the toolbar or press F5 to run your code.

from turtle import *
shape('turtle')
width(5)
color('purple')

circle(200)

❏ Next you'll fill in a shape with color. Start by adding the line
fillcolor('pink') at the beginning of your code. You can swap

in the name of a different color if you prefer.

❏ Next, add the lines begin_fill() and end_fill() at the
beginning and end of drawing a shape. Go to Run > Run Module
in the toolbar or press F5 to run your code.

from turtle import *
shape('turtle')
width(5)
color('purple')
fillcolor('pink')

begin_fill()
circle(200)
end_fill()

❏ To set the background color for the whole canvas, you can use
the bgcolor() function.

bgcolor('orange')

▶ Use a for loop

You can use a for loop to run the same piece of code as many
times as you want.

Here's what a for loop looks like in Python. The line for i in
range(25): starts the loop, and the indented lines underneath will
run repeatedly. You can indent using a tab or 4 spaces. The
function range(25) specifies that the loop will run 25 times.

for i in range(25):
 begin_fill()
 circle(50-i)
 end_fill()

The first time this loop runs, the variable i will have the value 0 .
The second time it runs, i will be 1 , etc. On the final iteration,
i will equal 24 .

The code above draws a circle with 50-i (fifty minus i) as the
radius value every time the for loop runs.

❏ The code below is an update on the previous for loop, starting
with a radius of 150 and reducing it by i*5 on each iteration. (In
Python, * is the multiplication symbol.)

for i in range(25):
 begin_fill()
 circle(150-(i*5))
 end_fill()

🐢 Mini challenge

❏ Use a for loop with penup() and pendown() to make a
dotted line.

🐢 Mini challenge

❏ Use a for loop to draw the same shape at a range of
different angles.

▶ An Example with Random Numbers

❏ If you want to use random numbers in your Python Turtle code,
you'll need to include the line import random near the beginning.

The method random.randint(1,360) will return a random integer
from 1 to 360, inclusive. You can put the whole function between
the parentheses of a left() or right() function to choose an
angle at random.

The code below also uses the home() function to return the turtle
to its original position without erasing the drawing.

from turtle import *
import random
width(3)
color('purple')
bgcolor('lightyellow')

for i in range(70):
 penup()
 home()
 left(random.randint(1,360))
 forward(random.randint(30,250))
 pendown()
 for j in range(4):
 forward(30)
 left(90)

If you want your turtle to draw faster, You can add the speed()
function at the beginning of your program. The maximum speed is
9 .

speed(9)

To hide your turtle cursor so you can get a clean screenshot, use
the hideturtle() function.

hideturtle()

▶ An Example with Random Colors

In the example below, we start by creating a list of color names and
storing it as a variable called color_list . In addition to the color
names we're using below, you can use hex-formatted colors such
as #01d6ae .

Later in the code we use random.choice(color_list) to select a
random color from the list, which is passed to the fillcolor()
function to set the color of the current shape.

from turtle import *
import random
width(3)
color('purple')
bgcolor('lightyellow')
speed(9)

color_list =
['red','orange','yellow','lightgreen','lightblue','vio
let']

for i in range(70):
 penup()
 home()
 left(random.randint(1,360))
 forward(random.randint(30,250)
 pendown()
 fillcolor(random.choice(color_list))
 begin_fill()
 for j in range(4):

 forward(30)
 left(90)

 end_fill()

hideturtle()

The code above uses a for loop to draw each square, starting with
the line for j in range(4): . Note that this loop is inside another
for loop, so the code inside it is double indented.

🐢 More Challenges

❏ Draw a house

❏ Draw a happy robot

❏ Draw a worm

❏ Draw a pentagon

❏ Draw an n-sided polygon

❏ Draw a 5-sided star

❏ Draw an n-sided star

❏ Draw a flower

❏ Draw a flower with n petals

❏ Write your name in cursive

❏ Draw a randomized night sky with shooting stars

❏ Draw a tree with random details

▶ Using Python Turtle at Home

Ubuntu instructions

If you're using Ubuntu or a similar Debian-based Linux distro, run
the following commands to install IDLE:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install idle

If you're using an older version of Ubuntu, you may also need to
install the tkinter Python package:

sudo apt-get install python3-tk

macOS instructions

On Mac, open a terminal window and run idle3 to see if IDLE is
installed.

If it isn't available, go to https://brew.sh and follow the instructions
to install Homebrew. Then run the following commands to install
Python3 and Tkinter:

brew install python3
brew install tkinter

https://brew.sh/

Run the command idle3 and you should be good to go.

Windows instructions

Coming soon!

Updated August 27, 2023

You can find the latest version of this zine at the following URL:
https://github.com/iffybooks/draw-with-code

Follow Iffy Books on Mastodon!

https://post.lurk.org/@iffybooks

Make a one-time or recurring donation:

https://iffybooks.net/donate

♥ Thank you!

https://github.com/iffybooks/draw-with-code
https://post.lurk.org/@iffybooks
https://iffybooks.net/donate

